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Is this model valid?

• Water plume data from the Las
Cruces Trench Experiments

• Experiment: Water content
measured on a 11 wide by 24
deep grid

• Characterization: Detailed
characterization based on 450
soil samples taken in a vertical
plane

• Prediction: One realization of a
heterogeneous soil water
retention model based on
detailed characterization
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How about this model?

Volumetric Water Contents
(Correlation Coef = 0.58)
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Metrics

• How do we rigorously compare observations to
predictions?

• Qualitatively

– Graphical Comparisons

• Quantitative Metrics

– Correlation coefficients, maximum error, mean error,
etc.

• What values of these metrics are good enough?



Statistical Based Validation

• Use statistical methods to define acceptable values for a
metric

• Scientific Validation - is difference between prediction and
observation significant relative to the uncertainty in the
validation exercise?

• Engineering Validation - is difference between prediction
and observation significant relative to the uncertainty in
the validation exercise plus some acceptable error?



Validation, continued

• Both questions require probabilistic models for the
uncertainty to define whether the prediction errors are
statistically significant relative to this uncertainty.

• Several approaches to develop probability models
– Many independent, repeated experiments - usually not available

for complex engineering applications

– Fewer independent experiments, multivariate data

– Evaluate the uncertainty using probabilistic model for model
parameters and measurement uncertainty



This Talk

• Background

• Standard statistical methods for validation using data from
multiple experiments - CTH example

• Validation using multivariate data using propagation of
uncertainty analysis - Conceptual



CTH Example

• Model :
– 1-D CTH simulation (based on the 1-D example provided with

CTH)

– Impact aluminum slug with velocity of 2*Up on a stationary
aluminum slug of equal size - results in shock with the behind the
shock particle speed of Up

– EOS - Sesame 2024 aluminum

– Evaluate corresponding shock wave speed Us

• Experimental Data:
– Us vs. Up data obtained from LANL Shock Wave Compendium

– 232 experiments - presumed independent



CTH Results

232 CTH Simulations
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Is this model valid?

• Question 1: Is there sufficient evidence that the mean of
the prediction error is not zero given the uncertainty
reflected in the validation data? This is the simplest
statistical question we can ask.

• Question 2: What can we say about the ability of the model
to predict Us and a function of Up?

• Question 3: Can we put error bounds on the prediction of
Us as a function of Up?



Statistical Inference

• Need model for prediction
error uncertainty

• Initially assume prediction
errors are independent and
normally distributed

• Test normality
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Distribution of Prediction Errors

Us_pred - Us_exper
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Probability-Probability Plot

Normal P-P Plot of Us_pred - Us_exper
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Test for Normality

One-Sample Kolmogorov-Smirnov Test
Us_pred - Us_exper

N    232
Normal Parametersa,b Mean 140.4

Std. Deviation 163.7
Most Extreme Differences Absolute 0.095

Positive 0.095
Negative                -0.059

Kolmogorov-Smirnov Z 1.452
Asymp. Sig. (2-tailed) 0.030

a. Test distribution is Normal.
b. Calculated from data.



Test for Normality, continued

• The level of significance is only 3% indicating that if the
distribution of the prediction errors is normally distributed,
we would have only a 3% chance of obtaining a maximum
difference this far from normal

• We reject the hypothesis that the prediction errors are
normally distributed at this level of significance

• This implies that we must use statistical methods for non-
normally distributed prediction errors to test our model

• Tried other distributions, will use nonparametric methods



Nonparametric Methods

• Nonparametric methods do not require that the probability
distribution be well characterized.

• Nonparametric methods are less powerful than parametric
methods in that they are more likely to accept a bad model.

• These methods do require some assumptions such as
independence of data.



The Sign Test

                                      N
Us_pred - Us_exper Negative Differences   42

                                    Positive Differences       190
                                    Ties            0

                                    Total               232

Test statistic Z = 9.651
Asymp. Significance (2-tailed) = 0.000

• Assume model valid if there are as many positive
differences as negative differences for prediction errors

• Count the number of positive differences and evaluate the
probability of this many positive differences assuming a
symmetric distribution



Nonparametric Results

• The probability that a good model with this non-symmetry
in the prediction error count is less than 1 in 1000

• Thus there is no significant evidence that this model has
prediction errors symmetrically distributed about zero

• What can we say about the models ability to predict Us as
a function of Up?



What About Us = Function(Up)?

• Us_exper and Us_pred
appear to both be linear in
Up.

• Perform linear regression
and compare the regression
coefficients
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Regression

• Us = s Up + constant

95% Confidence Interval for Coefficients
Model Coefficient Lower Bound Upper Bound

Exper: Constant 5360.854 5340.903 5380.804
s 1.299 1.290 1.308

Pred: Constant 5256.690 5249.502 5263.878
s 1.425 1.422 1.428

• Coefficients do not overlap

• Will use slightly different approach to investigate this
further



More General Approach

• We can plot Us_exper vs.
Us_pred

• Perform regression on the
results

• Evaluate whether slope=1 and
intercept=0

• Statistical assumptions
– no variability in Us_pred

– errors in Us_exper are
independent, normally
distributed, with uniform
variance, and uncorrelated
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Us_exper   vs.   Us_pred
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Test for Normality, Regression

One-Sample Kolmogorov-Smirnov Test
Regression Residuals

N    232
Normal Parametersa,b Mean 0.000

Std. Deviation 83.69
Most Extreme Differences Absolute 0.050

Positive 0.045
Negative                -0.050

Kolmogorov-Smirnov Z 0.769
Asymp. Sig. (2-tailed) 0.596

a. Test distribution is Normal.
b. Calculated from data.



Regression of Experiment vs. Prediction

• Good evidence that prediction
errors are normally distributed

• Can use normal distribution for
statistical inference

• Is slope = 1?

• Is intercept = 0?
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Regression of Us_exper vs. Us_pred

95% Confidence Interval for Coefficients
Coefficient Lower Bound Upper Bound

intercept 570.492 514.473 626.510
slope .911 .905 .918

• The intercept is not zero and the slope is not unity within
their 95% confidence intervals - CTH model does not
appear to be scientifically valid for this particular
application



Prediction Bounds of Us_exper vs. Us_pred

• Thin curves - 95% prediction
bounds on regression

• Use to define engineering bounds

• < 5% chance that a Us_exper will
lie outside the error bounds

• <5% chance that Us_exper will
be different from Us_pred by
more than 7% at Us_pred=11000
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This Validation Exercise

• There is no sufficient statistical evidence that the model
over predicts and under predicts in equal frequency based
on the uncertainty of the validation experiment. Therefore,
there is no evidence that the model is valid.

• Error bounds could be established on predictions of Us as a
function of Up because we had sufficient data with easy to
model statistical characteristics



This is as Easy as it Gets

• The data has very little scatter and there is sufficient
repetition of the data

• The data is univariant and apparently independent

• The difference between the experiment and prediction is so
large relative to estimated uncertainty that strong
statements on model validity could be made using
nonparametric methods

• A linear relation exists between the predicted and
measured Us, and the regression residuals were normally
distributed,  allowing one to easily establish a model for
the bounds on the prediction error



Validation: Multivariate Data

• There are many experimental situations for which it is
simply not practical to perform multiple independent
experiments

• Multivariate data is usually available, but the data are often
highly correlated with an unknown correlation structure

• Because of the above, it is difficult to estimate the
probability distributions using the data directly



Multivariate Data, continued

• If we have sufficient data to statistically characterize the
model parameters and the measurement error, then we can
use the model itself to develop a model for the probability
distributions for the prediction errors (i.e., through Monte
Carlo or sensitivity analysis).

• We can perform statistical model validation if the
probability structure (including the correlation structure)
can be identified



Observation/Prediction Space
(n-dimensional)

• A geometric approach is
useful to conceptualize
validation with correlated
errors

• Points O and P each represent
n-tuples where
– n is either the total number of

measurements, or

– n is the number of
measurement locations at
time t.



Model Validation

• Are these two points far
enough apart to consider the
model invalid?

• Are these two points far
enough apart relative to the
modeled uncertainty in the
validation exercise to consider
the model invalid?



Uncertainty Analysis

• Characterize the model
parameters and their uncertainty
(variability)

• Propagate this uncertainty
through the model to evaluate
uncertainty (variability) in
predictions due to parameter
uncertainty (variability)



Validation

• Add measurement and its
estimated uncertainty

• Is this model valid?

• Point Validation
– Validation measures are in

terms of the prediction errors
directly

• Integrated Measure Validation
– Validation measures are

functionals of the prediction
errors



Integrated Measures

• Means

• Linear regression coefficients

• Mass balance over a region

• Integrated measures can often
be represented as projections
onto subspaces of the validation
space



Projection onto Measure 1

• Is the distance between the
prediction and measurement, as
projected onto the validation
measure, large relative to the
uncertainty?

• Relative distance not large for
this case - implies no significant
evidence to reject the model



Projection onto Measure 2

• Is the distance between the
prediction and measurement, as
projected onto the validation
measure, large relative to the
uncertainty?

• Relative distance is large for this
case - implies significant
evidence to reject the model

• A model that appears valid by
one integrated measure may
appear invalid by another

• Integrated measure should be
appropriate for the final
application



Point Validation

• Measure distance between
prediction and measurement in
n-dimensional space directly
rather than in a subspace

• Is this distance large relative to
the uncertainty on the validation
exercise?

• Yes for this case, but not clear
how to actually quantify this



Point Validation, continued

• Easier to visualize if we
combine the modeled
uncertainty of the validation
exercise into one uncertainty
– Prediction uncertainty

– Experimental uncertainty

• Is the distance between the
measurement and the center of
the PDF cloud large relative to
the size of the cloud?

• If so, reject the model as valid

• How do we actually measure
this distance?



Possible Metric

• Metric: Define constant
distance curves to be constant
PDF curves

• Critical Distance: Reject the
model if measurement is
outside a critical constant PDF
curve

• Analogous to two-tailed critical
region for the univariant cases
for symmetric distributions



Problems

• Metric arbitrarily defined
relative to final application if
validation experiment does not
closely represent the final
application

• Constant PDF curves may not
be appropriate for application

• Very expensive to compute for
n large



Application Defined Metrics

• One possibility to reduce the computational requirements
is to use integrated metrics (i.e., metrics based on
projections into lower dimensional spaces)

• Many applications have go/no-go decisions based on a
small set of conditions (i.e., low degrees of freedom)

• The validation experiments usually measure different
variables than those used for the go/no-go decisions

• Develop a map between the validation experiment
variables and the decision variables using the model

• Use the map to define integrated validation measures



Example using Sensitivity Analysis

• m is the critical scalar measure
for the application

• We wish to test model’s ability to
accurately predict m

• Sensitivity analysis used to
approximate measure in
validation space

• Perform statistical inference on
predicted m equal to
experimental m in validation
space
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Application Defined Metric

• The characteristics of the pseudo-inverse of A can be used
to evaluate how well the application metric maps to the
corresponding metric for the validation experiment
(geophysical inverse theory literature)

• Poor mappings indicate that validation experiments not
well suited for the final application

• These ideas may be extendable for application to multiple
validation experiments



Summary

• The availability of sufficient independent experimental data
to adequately characterize the probability distributions for
the prediction error uncertainty greatly simplifies model
validation - standard statistical methods can be used

• Correlated data adds significant complexity
– Typical of measurements made over space and time

– Difficult to evaluate correlation structure from data only

• Propagate the uncertainty to develop a model for the
prediction uncertainty and correlation
– Requires statistical characterization of model parameters and

experimental data

– Can be very CPU intensive for multivariate validation data due to
high dimensionality in the validation space



Summary, continued

• Integrated measures reduce the CPU requirements due to
their lower dimensionality

• Models that appear valid by one integrated measure can
appear invalid by another

• Application specific integrated measures may be the most
appropriate measured because they relate application
metrics to validation metrics


